新書推薦:

《
日本突围:平成三十年日本企业的挣扎、破局与重生
》
售價:HK$
96.8

《
中国精怪图鉴 阿亮著 精怪是古人对抗未知的隐喻 读它们的故事学会与内心的恐惧共处 一本书带你邂逅千年
》
售價:HK$
97.9

《
大唐之美(梦回唐朝的导览手册,考古、艺术、历史、文学融为一体,全景视角,640幅全彩图片,带你踏上唐
》
售價:HK$
173.8

《
零基础刺绣一本通
》
售價:HK$
64.9

《
牙体解剖生理学
》
售價:HK$
42.9

《
新一代玫瑰月季
》
售價:HK$
85.8

《
红颜来处是长安:大唐的盛世和她们的命运
》
售價:HK$
75.9

《
没有内容的人
》
售價:HK$
63.8
|
| 內容簡介: |
This book is composed of two parts: Part I (Chaps. I through 3) is an introduction to tensors and their physical applications, and Part II (Chaps. 4 through 6) introduces group theory and intertwines it with the earlier material. Both parts are written at the advanced-undergraduatebeginning graduate level, although in the course of'' Part II the sophistication level rises somewhat. Though the two parts differ somewhat in flavor,l have aimed in both to fill a (perceived) gap in the literaiure by connecting
來源:香港大書城megBookStore,http://www.megbook.com.hk the component formalisms prevalent in physics calculations to the abstract but more conceptual formulations found in the math literature. My firm beliefis that we need to see tensors and groups in coordinates to get a sense of how they work, but also need an abstract formulation to understand their essential nature and organize our thinking about them.
|
| 目錄:
|
Part I Linear Algebra and Tensors
I A Quicklntroduction to Tensors
2 VectorSpaces
2.1 Definition and Examples
2.2 Span,Linearlndependence,and Bases
2.3 Components
2.4 LinearOperators
2.5 DuaISpaces
2.6 Non-degenerate Hermitian Forms
2.7 Non-degenerate Hermitian Forms and Dual Spaces
2.8 Problems
3 Tensors
3.1 Definition and Examples
3.2 ChangeofBasis
3.3 Active and Passive Transformations
3.4 The Tensor Product-Definition and Properties
3.5 Tensor Products of V and V*
3.6 Applications ofthe Tensor Product in Classical Physics
3.7 Applications of the Tensor Product in Quantum Physics
3.8 Symmetric Tensors
3.9 Antisymmetric Tensors
3.10 Problems
Partll GroupTheory
4 Groups, Lie Groups,and Lie Algebras
4.1 Groups-Definition and Examples
4.2 The Groups ofClassical and Quantum Physics
4.3 Homomorphismandlsomorphism
4.4 From Lie Groups to Lie Algebras
4.5 Lie Algebras-Definition,Properties,and Examples
4.6 The Lie Algebras ofClassical and Quantum Physics
4.7 AbstractLieAlgebras
4.8 Homomorphism andlsomorphism Revisited
4.9 Problems
5 Basic Representation Theory
5.1 Representations: Definitions and Basic Examples
5.2 FurtherExamples
5.3 TensorProduet Representations
5.4 Symmetric and Antisymmetric Tensor Product Representations
5.5 Equivalence ofRepresentations
5.6 Direct Sums andlrreducibility
5.7 Moreonlrreducibility
5.8 Thelrreducible Representations ofsu(2),SU(2) and S0(3)
5.9 ReaIRepresentations andComplexifications
5.10 The Irreducible Representations of st(2, C)nk, SL(2, C) andS0(3,1)o
5.11 Irreducibility and the Representations of 0(3, 1) and Its Double Covers
5.12 Problems
6 The Wigner-Eckart Theorem and Other Applications
6.1 Tensor Operators, Spherical Tensors and Representation Operators
6.2 Selection Rules and the Wigner-Eckart Theorem
6.3 Gamma Matrices and Dirac Bilinears
6.4 Problems
Appendix Complexifications of Real Lie Algebras and the Tensor
Product Decomposition ofsl(2,C)rt Representations
A.1 Direct Sums and Complexifications ofLie Algebras
A.2 Representations of Complexified Lie Algebras and the Tensor
Product Decomposition ofst(2,C)R Representations
References
Index
|
|