新書推薦:

《
《四圣心源》入门精讲
》
售價:HK$
65.8

《
眼科医生的护眼妙招
》
售價:HK$
43.8

《
观乎动植:康乾时代的清宫博物绘画
》
售價:HK$
184.8

《
香港电影:反思与观照
》
售價:HK$
74.8

《
掌握提问驱动AI:速通大模型提示工程
》
售價:HK$
108.9

《
孤注一掷:大规模变革如何真正发生
》
售價:HK$
57.2

《
圣林:艾略特诗论集
》
售價:HK$
49.5

《
清嘉录 文白对照全译本 中华民俗文化之旅 中国岁时风俗大百科 民间生活美学之书
》
售價:HK$
63.8
|
| 內容簡介: |
|
《信息论基础(英文版)》作者(杨伟豪)现为香港中文大学网络编码研 究所主任,是网络编码理论的提出者之一。本书原版自2002年出版以来,被 哥伦比亚大学、康奈尔大学、麻省理工学院、斯坦福大学等美国著名学府所 采用,是信息理论方面的重要教材。本书首先介绍了信息论的经典内容,然 后全面详细地论述了,度量、网络编码、Shannon型与非Shannon型信息不等 式等理论,以及熵函数与群论之间的关系。《信息论基础(英文版)》中配有 大量的实例、插图和习题,适合作为通信、电子信息、计算机等专业的高年 级本科生和研究生的教材,也可供相关领域的科研人员参考。
|
| 關於作者: |
|
杨伟豪(Raymond w.Yeung)教授1988年毕业于美国康奈尔大学。获博士学位。之后曾在ATT贝尔实验室工作3年,于1 991年加入香港中文大学,现为网络编码研究所主任,是网络编码理论的提出者之一,其主要研究领域为信息理论与网络编码。他还是IEEE Fellow和香港工程师学会会士。
|
| 目錄:
|
1. THE SCIENCE OF INFORMATION
2. INFORMATION MEASURES
2.1 Independence and Markov Chains
2.2 Shannon''s Information Measures
2.3 Continuity of Shannon''s Information Measures
2.4 Chain Rules
2.5 Informational Divergence
2.6 The Basic Inequalities
2.7 Some Useful Information Inequalities
2.8 Fano''s Inequality
2.9 Entropy Rate of Stationary Source
Problems
Historical Notes
3. ZERO-ERROR DATA COMPRESSION
3.1 The Entropy Bound
3.2 Prefix Codes
3.2.1 Definition and Existence
3.2.2 Huffman Codes
3.3 Redundancy of Prefix Codes
Problems
Historical Notes
4. WEAK TYPICALITY
4.1 The Weak AEP
4.2 The Source Coding Theorem
4.3 Efficient Source Coding
4.4 The Shannon-McMiilan-BreimanTheorem
Problems
Historical Notes
5. STRONG TYPICALITY
5.1 StrongAEP
5.2 Strong Typicality Versus Weak Typicality
5.3 Joint Typicality
5.4 An Interpretation of the Basic Inequalities
Problems
Historical Notes
6. THE-MEASURE
6.1 Preliminaries
6.2 The-Measure for Two Random Variables
6.3 Construction of the-Measure ч*
6.4 #* Can be Negative
6.5 Information Diagrams
6.6 Examples of Applications
Appendix 6.A: A Variation of the Inclusion-Exclusion Formula
Problems
Historical Notes
7. MARKOV STRUCTURES
7.1 Conditional Mutual Independence
7.2 Full Conditional Mutual Independence
7.3 Markov Random Field
7.4 Markov Chain
Problems
Historical Notes
8. CHANNEL CAPACITY
8.1 Discrete MemorylessChannels
8.2 The Channel Coding Theorem
8.3 The Converse
8.4 Achievability of the Channel Capacity
8.5 A Discussion
8.6 Feedback Capacity
8.7 Separation of Source and Channel Coding
Problems
Historical Notes
9. RATE-DISTORTION THEORY
9.1 Single-Letter Distortion Measures
9.2 The Rate-Distortion Function RD
9.3 The Rate-Distortion Theorem
9.4 The Converse
9.5 Achievability of RID
Problems
Historical Notes
10. THE BLAHUT-ARIMOTO ALGORITHMS
10.I Alternating Optimization
10.2 The Algorithms
10.2.1 Channel Capacity
10.2.2 The Rate-Distortion Function
10.3 Convergence
10.3.1- A Sufficient Condition
10.3.2 Convergence to the Channel Capacity
Problems
Historical Notes
11. SINGLE-SOURCE NETWORK CODING
11.1 A Point-to-Point Network
11.2 What is Network Coding?
11.3 A Network Code
11.4 The Max-Flow Bound
11.5 Achievability of the Max-Flow Bound
11.5.1 Acyclic Networks
11.5.2 Cyclic Networks
Problems
Historical Notes
12. INFORMATION INEQUALITIES
12.1 The Region Fn
12.2 Information Expressions in Canonical Form
12.3 A Geometrical Framework
12.3.1 Unconstrained Inequalities
12.3.2 Constrained Inequalities
12.3.3 Constrained Identities
12.4 Equivalence of Constrained Inequalities
12.5 The Implication Problem of Conditional Independence
Problems
Historical Notes
13 SHANNON-TYPE INEQUALITIES
13.1 The Elemental Inequalities
13.2 A Linear Programming Approach
13.2.1 Unconstrained Inequalities
13.2.2 Constrained Inequalities and Identities
13.3 A Duality
13.4 Machine Proving - ITIP
13.5 Tackling the Implication Problem
13.6 Minimality of the Elemental Inequalities
Appendix 13.A: The Basic Inequalities and the Polymatroidal
Axioms
Problems
Historical Notes
14. BEYOND SHANNON-TYPE INEQUALITIES
14.1 Characterizations of г2,г3, and гn
14.2 A Non-Shannon-Type Unconstrained Inequality
14.3 A Non-Shannon-Type Constrained Inequality
14.4 Applications
Problems
Historical Notes
15. MULTI-SOURCE NETWORK CODING
15.1 Two Characteristics
15.1.1 The Max-Flow Bounds
15.1.2 Superposition Coding
15.2 Examples of Application
15.2.1 Multilevel Diversity Coding
15.2.2 Satellite Communication Network
15.3 A Network Code for Acyclic Networks
15.4 An Inner Bound
15.5 An Outer Bound
15.6 The LP Bound and Its Tightness
15.7 Achievability of Rin
Appendix 15.A: Approximation of Random Variables with
Infinite Alphabets
Problems
Historical Notes
16. ENTROPY AND GROUPS
16.1 Group Preliminaries
16.2 Group-Characterizable Entropy Functions
16.3 A Group Characterization of гn
16.4 Information Inequalities and Group Inequalities
Problems
Historical Notes
Bibliography
Index
|
|