新書推薦:

《
新文化运动中的杜威——“实用主义”的变奏
》
售價:HK$
82.5

《
世界两栖战舰和两栖作战百科全书
》
售價:HK$
437.8

《
藩镇时代
》
售價:HK$
107.8

《
国家记忆:故宫文物南迁史
》
售價:HK$
185.9

《
时间的朋友
》
售價:HK$
64.9

《
士变:近代中国的思想转折
》
售價:HK$
96.8

《
本土在行动:近代中国的疾病、医疗与卫生(1820-1937)(学衡心史文丛)
》
售價:HK$
107.8

《
生活中的逻辑学
》
售價:HK$
74.8
|
| 內容簡介: |
本书是一部英文版的非线性科学方面的专著,内容是20世纪中非常令人鼓舞的非线性科学。它不仅在科学和技术上对人类有非常大的震撼而且还在世界观和方法论层面对世人造成了颠覆式的冲击。
來源:香港大書城megBookStore,http://www.megbook.com.hk 本书介绍了三个不同类型的分歧的分析与数值的研究。类属于局部分歧的是霍普夫分歧,另外两个类型是同宿与异宿分歧,属于全局分歧。还讨论了两个不同的带时滞反馈控制的非线性动力系统中的分歧分析与混沌。
|
| 目錄:
|
|
(I) Summary(II) Aim of the study(III) IntroductionChapter 1: Nonlinear Dynamical Systems and Preliminaries.1.1 Nonlinear dynamical systems1.1.1 Continuous dynamical systems1.1.2 Equilibrium points of dynamical system1.2 Attractor1.2.1 Strange attractor1.2.2 Limit cycle1.3 Bifurcations1.3.1 Saddle-node bifurcation1.3.2 Transcritical bifurcation1.3.3 The Pitchfork bifurcation1.3.4 Hopfbifurcation1.4 Global bifurcations1.4.1 A Homoclinic Bifurcation1.4.2 Heteroclinic Bifurcation1.5 Chaos1.6 Lyapunov exponents1.7 Time-delayed feedback method1.7.1 Hopfbifurcation in delayed systems1.7.2 Center manifold theoryChapter 2: LOCAL BIFURCATION On Hopfbifurcation of Liu chaotic system2.1 Introduction2.2 Dynamical analysis of the Liu system2.3 The first Lyapunov coefficient2.4 The Hopf-bifurcation analysis of Liu systemChapter 3: GLOBAL BIFURCATION Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems3.1 Introduction3.2 Homoclinic and Heteroclinic orbit3.3 Structure of the Lii system3.4 The existence ofheteroclinic orbits in the Lu3.4.1 Finding heteroclinic orbits3.4.2 The uniform convergence ofheteroclinic orbits series expansion3.5 Structure of the Zhou‘s system3.6 Existence of Si’lnikov-type orbits3.6.1 The existence ofheteroclinic orbits3.6.2 The uniform convergence ofheteroclinic orbits series expansion.3.7 The existence ofhomoclinic orbitsChapter 4: Si‘lnikov Chaos of a new chaotic attractor from General Lorenz system family4.1 Introduction4.2 The novel system and its dynamical analysis4.3 The existence ofheteroclinic orbits in the novel system4.4 The uniform convergence of heteroclinic orbits series expansion4.5 The existence ofhomoclinic orbits4.6 The uniform convergence ofhomoclinic orbits series ExpansionChapter 5: Bifurcation Analysis and Chaos Control in Zhou’s System and Schimizu-Morioka system with Delayed Feedback5.1 Introduction5.2 Bifurcation analysis of Zhous system with delayed feedback force5.3 Direction and stability of Hopfbifurcation5.4 Numerical results5.5 Bifurcation Analysis and Chaos Control in Schimizu- Morioka Chaotic with Delayed Feedback5.5.1 Bifurcation analysis of Schimizu-Morioka system with delayed feedback force5.5.2 Direction and stability of Hopfbifurcation.5.5.3 Numerical resultsRecommendations: Bibliography编辑手记
|
|