新書推薦:

《
伊藤润二自选杰作集
》
售價:HK$
74.8

《
做孩子的第一任语文老师(有远见的家长,早就把家变成了第一号语文教室)
》
售價:HK$
65.8

《
三国群雄绘
》
售價:HK$
108.9

《
虚构与史实:“三言”与明代大历史
》
售價:HK$
107.8

《
日债、负利率与流动性陷阱(经济下行期,我们如何自救?国内日本问题重要研究专家方明教授重磅作品)
》
售價:HK$
151.8

《
新美术馆学(第3辑)
》
售價:HK$
97.9

《
海派文化地理
》
售價:HK$
107.8

《
中国画颜色的研究(修订版)
》
售價:HK$
54.9
|
| 內容簡介: |
|
本书是分析学课程著作的第三卷,涵盖了每个数学家都必须要研究的两个主题,讨论了勒贝格的积分理论和实变量的实值函数理论中的第一个结果,介绍了一个复变量的复值函数理论——习惯上简称为“函数理论”。实值函数、傅里叶分析、函数分析、动力系统理论、偏微分方程或变分法的高级理论等也都在本书中有所提及。
|
| 目錄:
|
Preface
Introduction
List of Symbols
Part 6: Measure and Integration Theory
1 A First Look at a-Fields and Measures
2 Extending Pre-Measures. CarathSodorys Theorem
3 The Lebesgue-Borel Measure and Hausdorff Measures
4 Measurable Mappings
5 Integration with Respect to a Measure The Lebesgue Integral
6 The Radon-Nikodym Theorem and the Transformation Theorem
7 Almost Everywhere Statements, Convergence Theorems
8 Applications of the Convergence Theorems and More
9 Integration on Product Spaces and Applications
10 Convolutions of Functions and Measures
11 Differentiation Revisited
12 Selected Topics
Part 7: Complex-valued Functions of a Complex Variable
13 The Complex Numbers as a Complete Field
14 A Short Digression: Complex-valued Mappings
15 Complex Numbers and Geometry
16 Complex-Valued Functions of a Complex Variable
17 Complex Differentiation
18 Some Important Functions
19 Some More Topology
20 Line Integrals of Complex-valued Functions
21 The Cauchy Integral Theorem and Integral Formula
22 Power Series, Holomorphy and Differential Equations
23 Further Properties of Holomorphic Functions
24 Meromorphic Functions
25 The Residue Theorem
26 The F-functions the (-function and Dirichlet Series
27 Elliptic Integrals and Elliptic Functions
28 The Riemaim Mapping Theorem
29 Power Series in Several Variables
Appendices
Appendix I: More on Point Set Topology
Appendix II: Measure Theory, Topology and Set Theory
Appendix III: More on M/Sbius Transformations
Appendix IV: Bernoulli Numbers
Solutions to Problems of Part 6
Solutions to Problems of Part 7
References
Mathematicians Contributing to Analysis (Continued)
Subject Index
编辑手记
|
|