新書推薦:

《
大学问·从“分治”到“整合”:明清湘黔边墙历史演进与结构变迁
》
售價:HK$
85.8

《
众神:四万年的人、物与信仰
》
售價:HK$
184.8

《
汗青堂丛书159·欧洲的熔炉:意大利文艺复兴与西方的崛起
》
售價:HK$
101.2

《
凌空之魂:五十岚大介短篇集 赠猫咪方银卡+鸮女明信片 自然寓言怪谈异色人外兽人都市奇谭漫画
》
售價:HK$
47.1

《
女性曼陀罗心理成长涂画书
》
售價:HK$
75.9

《
晚清困局:同治中兴的权力博弈与秩序重建
》
售價:HK$
85.8

《
BeamDojo原理与应用实践:构建具身智能系统
》
售價:HK$
119.9

《
混沌与秩序Ⅲ:人工智能时代企业成长之道
》
售價:HK$
96.8
|
| 內容簡介: |
|
本书展示了一种新的混合优化方法来解决最重要的**化问题之一——非线性**化问题。本书共包含六章内容,第一章提出了**化问题的数学模型;第二章致力于介绍遗传算法的工作原理,并解释了遗传算法是如何应用到解**化问题之中的;第三章提出了解非线性**化问题的一个新算法;第四章提出了作业安排调度问题的结构,引入了作业安排调度问题的公式化;第五章的目的是实施解作业安排调度问题的新方法,并解释了它的细节;第六章为结论以及给未来研究者的几点建议。
|
| 目錄:
|
List of Figures
List of Tables
Abstract
CHAPTER 1: A Survey on Related Topoes
1.1 Introduction
1.2 Mathematical Model of Optimization Problems
1.3 Classification of optimization problems
1.3.1 Classification based on existence of constraints
1.3.2 Classification based on nature of the design variables
1.3.3 Classification based on physical structure of the problem
1.3.4 Classification based on nature of the equations involved
1.3.5 Classification based on permissible values of the design variables
1.3.6 Classification based on deterministic nature of the variables
1.3.7 Classification based on separability of the functions
1.3.8 Classification based on number of the objective functions
1.4 Optimization Techniques
1.4.1 Classical Optimization Techniques
1.4.1.1 Nonlinear Programming
1.4.2 Advanced Techniques
1.4.2.1 Genetic algorithm (GA)
1.4.2.2 Simulated annealing (SA)
1.4.2.3 Neural network optimization
1.4.2.4 Tabu search (TS)
1.4.2.5 Ant colony optimization (ACO)
1.4.2.6 Particle swarm optimization (PSO)
1.4.2.7 Harmony search (HS)
1.4.2.8 Artificial bee colony (ABC)
CHAPTER 2: Genetic Algorithm
2.1 Introduction
2.2 Working Principle of GA
2.3 Genetic algorithm procedure for optimization problems
2.3.1 Encoding
2.3.2 Initial Population
2.3.3 Evaluation
2.3.4 Create new population
2.3.4.1 Selection
2.3.4.2 Crossover
2.3.4.3 Mutation
2.3.5 Repair
2.3.6 Migration
2.3.7 Termination Test
2.4 Genetic algorithm Parameters
2.4.1 Crossover probability
2.4.2 Mutation probability(Pro)
2.4.3 Population Size
2.5 Advantages and disadvantages of GA
2.5.1 Advantages of GA
2.5.2 Disadvantages of GA
CHAPTER 3: A Chaos-based Evolutionary Algorithm for General Nonlinear Programming Problems
3.1 Introduction
3.2 Chaos Theory
3.3 Chaotic maps
3.4 The proposed algorithm
3.4.1 Phase I: GA
3.4.2 Phase II : Chaotic local search
3.5 Experimental results
3.5.1 Test function
3.5.1.1 Unconstrained benchmark problems
3.5.1.2 Constrained benchmark problems
3.5.2 Performance Analysis Using Different Chaotic Maps
3.5.3 Performance Analysis using logistic map
3.5.4 Speed Convergence analysis
3.6 Conclusion
CHAPTER 4: Job Shop Scheduling Problems
4.1 Introduction
4.2 Scheduling Problem Types
4.3 Job shop scheduling problem structure
4.4 Job shop scheduling problem formulation
4.4.1 Mathematical representation of JSSP
4.4.2 Disjunctive graph
4.4.3 Gantt-Chart
4.5 Complexity of JSSP
4.6 Job shop scheduling solving techniques
4.6.1 Exact techniques
4.6.1.1 Mathematical techniques
4.6.1.2 Enumerative techniques
4.6.1.3 Decomposition strategies
4.6.2 Approximate techniques
4.6.2.1 Constructive Methods
4.6.2.2 Insertion Algorithms
4.6.2.3 Evolutionary Methods
4.6.2.4 Local Search Techniques
CHAPTER 5: Hybrid Genetic Algorithm for Job Shop Scheduling Problems
5.1 Introduction
5.2 The proposed algorithm (HGA)
5.2.1 Phase I: GA
5.2.2 Phase II: Local search
5.3 Experimental Results
5.3.1 Test Problems
5.3.2 Results and discnssion
5.4 Conclusion
CHAPTER 6: Conclusions and Future Work
6.1 Conclusions
6.2 Future Work
Bibliography
编辑手记
|
|